государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа пос. Ленинский муниципального района Красноармейский Самарской области

«Рассмотрено»
на заседании МО учителей естественно-математического цикла
Протокол № Д
от « О+ » нолоры 2019 г.
Руководитель МО
Лу Яннаева Л.Ф.

«Проверено»
Зам. директора по УВР
Поряйнова Н.М.
пособенинский
пособенинский
Приказ № 1919 от
Приказ № 1919 от
Приказ № 1919 от
Приказ № 1919 г.

Годовая промежуточная аттестация по образовательным программам среднего общего образования

Клаес 10

Демонстрационный вариант контрольных измерительных материалов по химии

Спецификация КИМ

На выполнение всей работы отводится 40 минут.

Дополнительные материалы и оборудование

- 1) Периодическая система химических элементов Д.И.Менделеева.
- 2) Таблица растворимости солей, кислот и оснований в воде.
- 3) Электрохимический ряд напряжений металлов.
- 4) Калькулятор.

Условные обозначения: Уровень сложности: B — базовый уровень сложности, Π — повышенный уровень, B — высокий уровень Тип задания: BO — с выбором ответа, KO — краткий ответ, PO — с развернутым ответом.

Распределение заданий по уровням сложности, проверяемым элементам предметного содержания, уровню подготовки, типам заданий и времени выполнения представлено в таблице.

No	Уровень сложности	Код по спецификатору	Тип задания	Тема	Примерное время выполнения задания.	Оценка в баллах
A 1	Б	С-3.3. УП- 2.2.6	ВО	Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная).	1мин	16
A 2	Б	C-3.3. УП-2.2.6	ВО	Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная).	1 мин	16
A 3	Б	C- 3.1 C - 3.2 УП- 1.2.1 УП-2.2.2	ВО	Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа	1 мин	16

		УП-2.2.3				
		УП-2.2.7				
A 4	Б	C- 3.1	ВО	Взаимное влияние атомов	1 мин	1б
		C - 3.2		в молекулах. Типы связей в молекулах органических		
	УП-	УП- 1.2.1		веществ.		
		УП-2.2.2				
		УП-2.2.3				
		УП-2.2.7				
A 5	Б	C- 3.1	ВО	Теория строения	1 мин	1б
		C - 3.2		органических соединений: гомология и изомерия		
		УП- 1.2.1		(структурная и пространственная).		
		УП-2.2.2				
		УП-2.2.3				
		УП-2.2.7				
A 6	Б	C- 3.1	ВО	Теория строения	1 мин	16
		C - 3.2		органических соединений: гомология и изомерия		
		УП- 1.2.1		(структурная и пространственная).		
		УП-2.2.2		inpoorpuitorious).		
		УП-2.2.3				
		УП-2.2.7				
A 7	Б	C- 3.5	ВО	Характерные химические	1 мин	1б
		C-3.6		свойства предельных одноатомных и		
		C-4.1.8		многоатомных спиртов, фенола. Характерные		
		УП- 2.3.4		химические свойства альдегидов, предельных		
		УП-1.3.4		карбоновых кислот, сложных эфиров.		
		УП-2.5.1		Основные способы получения		
				кислородсодержащих органических соединений		
				(в лаборатории).		
A 8	Б	C- 3.4	ВО	Характерные химические	1 мин	1б
		C-4.1.7		свойства углеводородов:		
				алканов, циклоалканов,		

A 9	Б	УП- 2.3.4 УП-1.3.4 УП-2.5.1 С- 4.3.2 УП- 2.5.2	ВО	алкенов, диенов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола). Основные способы получения углеводородов (в лаборатории) Расчёты объёмных отношений газов при химических реакциях.	3 мин	16
A10	Б	C- 3.4 C-1.4.10 C-4.1.7. УП- 2.3.4 УП-2.4.4	ВО	Характерные химические свойства углеводородов: алканов, циклоалканов, алкинов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола). Важнейшие способы получения углеводородов. Ионный (правило В.В. Марковникова) и радикальный механизмы реакций в органической химии	1 мин	16
B 1	В	C- 3.7 C-3.8 УП- 2.3.4	КО	Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Важнейшие способы получения аминов и аминокислот. Биологически важные вещества: жиры, углеводы (моносахариды, дисахариды, полисахариды), белки	3 мин	2 6
B 2	В	C- 3.4 C-4.1.7 УП- 2.3.4 УП-1.3.4	КО	Характерные химические свойства углеводородов: алканов, циклоалканов, алкинов, ароматических углеводородов (бензола и гомологов бензола,	3 мин	2 б

В3	В	УП-2.5.1 С-3.3. УП- 2.2.6	КО	стирола). Основные способы получения углеводородов (в лаборатории) Классификация органических веществ. Номенклатура органических веществ (тривиальная и	3 мин	26
B 4	В	С-4.3.7 УП-2.5.2	PO	международная). Установление молекулярной и структурной формулы вещества	3 мин	
C 1	П	С-3.9 УП-2.3.4 УП-2.4.3	PO	Реакции, подтверждающие взаимосвязь органических соединений	8 мин.	6б
C 2	П	C-4.3.5 C-4.3.6 C-4.3.8 C-4.3.9 УП-2.5.2	PO	Расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчёты с использованием понятия «массовая доля вещества в растворе». Расчёты массовой или объёмной доли выхода продукта реакции от теоретически возможного. Расчёты массовой доли (массы) химического соединения в смеси	8 мин.	6 б

Кодификатор Элементов содержания и требований к уровню подготовки обучающихся

Раздел 1. Кодификатор. Элементы содержания

код	Элементы содержания, проверяемые заданиями КИМ
	ОРГАНИЧЕСКАЯ ХИМИЯ
3.1	Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах
3.2	Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа
3.3	Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)
3.4	Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола).
3.5	Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.
3.6.	Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров.
3.7	Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Важнейшие способы получения аминов и аминокислот
3.8	Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды)
3.9	Взаимосвязь органических соединений.
4.3.6	Вычисление количества вещества, массы или объема вещества по количеству вещества, массе или объему одного из реагентов или продуктов реакции
4.3.7	Установление молекулярной и структурной формулы вещества
4.3.8	Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного

Раздел 2. Кодификатор. Требования к уровню подготовки

Код элементов	Проверяемые умения				
	1. Знать/понимать				
1.1	основные теории химии: химической связи, электролитической				
	диссоциации, строения органических соединений				
1.2	важнейшие вещества и материалы: уксусная кислота, метан, этилен,				
	ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал,				
	клетчатка, белки, искусственные и синтетические волокна, каучуки,				
	пластмассы.				
	2.Уметь				
2.1	называть изученные вещества по тривиальной или международной				
	номенклатуре				
2.2.	определять/классифицировать				
2.2.1	вид химических связей в соединениях				
2.2.2	пространственное строение молекул				
2.2.3	принадлежность веществ к различным классам органических				
	соединений				
2.2.4	гомологи и изомеры				
2.2.5	химические реакции в органической химии (по всем известным				
	классификационным признакам)				
2.3	характеризовать				
2.3.1	строение и химические свойства изученных органических соединений				
2.3.2	зависимость свойств органических веществ от их состава и строения				
2.4	планировать/проводить				
2.4.1	вычисления по химическим формулам и уравнениям				

Система оценивания

Работа включает в себя 16 заданий различного уровня сложности со свободным ответом.

В работе выделены три части, которые различаются по содержанию и степени сложности включаемых в них заданий.

- 1. За верное выполнение каждого из заданий A_1 - A_{10} выставляется 1 балл, в другом случае 0 баллов.
- 2.За верное выполнение каждого из заданий B_1 – B_3 выставляется 2 балла, если в ответе указаны две любые цифры, представленные в эталоне ответа, и 0 баллов во всех других случаях. Если обучающийся указывает в ответе больше символов, чем в правильном ответе, то за каждый лишний символ снижается 1 балл (до 0 баллов включительно).
- 3.За ответы на задания В₄ выставляется 3 балла.
- 4.3а ответ на задания B_1 и B_3 выставляется 1 балл, если допущена одна ошибка, и 0 баллов, если допущено две и более ошибки.
- 5.Задания C_1 и C_2 оцениваются в зависимости от полноты и правильности ответа. Максимальный первичный балл за выполнение всей работы 31.

Распределение заданий работы по частям:

№	Части	Число	Максимальный	Тип
	работы	заданий	балл	заданий
1.	A	10	10	Задания с выбором ответа
2.	В	4	9	Задания с кратким ответом
				1
3.	С	2	12	Задания с развернутым ответом
	Итого	16	31	
	F11010	10	31	

Критерии ответа к варианту.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	В3	B4
2	4	3	2	3	4	2	1	1	4	235	235	3421	C ₄ H ₈

Содержание верного ответа задания С 1 и указания по его оцениванию	Баллы
Напишите уравнения реакций, с помощью которых можно осуществить	
превращения по схеме	
$CH_4 \rightarrow CH_3C1 \rightarrow C_2H_6 \rightarrow C_2H_4 \rightarrow C_2H_5OH \rightarrow HCOOC_2H_5$	
↓	
CO_2	
Элементы ответа:	
 CH₄ +Cl₂ → CH₃Cl + HCl 2CH₃Cl +2Na → C₂H₆ + 2NaCl C₂H₆ → C₂H₄ + H₂ C₂H₄ + H₂O → C₂H₅OH C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O 	
6) $HCOOH + C_2H_5OH \rightarrow HCOOC_2H_5 + H_2O$ Ответ правильный и полный, включает все названные выше элементы	6
Правильно записаны 5 элементов ответа	5
Правильно записаны 4 элемента ответа	4
Правильно записаны 3 элемента ответа	3
Правильно записано 2 элемента ответа	2
Правильно записан 1 элемент ответа	1
Все элементы ответа записаны неверно	0
Содержание верного ответа задания С 2 и указания по его оцениванию	Баллы
С 2. Какая масса метилацетата образуется при взаимодействии 80 г 60% раствора уксусной кислоты с метиловым спиртом, если доля выхода эфира составляет 90%? Элементы ответа:	
1) записано уравнение химической реакции:	
$CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$	
2) Определена масса уксусной кислоты: $m(CH_3COOH) = m \cdot w = 80 \cdot 0,6 = 48$ г	
3) Определено количество вещества уксусной кислоты:	
$n(CH_3COOH) = 48/60 = 0.8 моль$	
4) Определено количество вещества метилацетата:	
$n(CH_3COOCH_3)=n(CH_3COOH)=0.8$ моль	
5) Определена масса метилацетата: $m(CH_3COO\ CH_3) = n\cdot M = 74\cdot 0,8 = 59,2$ г	
6) Определена масса метилацетата с учетом практического выхода:	
$m(CH_3COO\ CH_3) = \eta \cdot m = 59,2 \cdot 0,9 = 53,28\ \Gamma$	

Ответ правильный и полный, включает все названные выше элементы	6
Правильно записаны 4 элемента ответа	5
Правильно записаны 4 элемента ответа	4
Правильно записаны 3 элемента ответа	3
Правильно записано 2 элемента ответа	2
Правильно записан 1 элемент ответа	1
Все элементы ответа записаны неверно	0

Оценка за выполнение работы определяется по пятибалльной шкале:

Число баллов	Менее 10	11 - 17	18- 24	25 - 31
Оценка	2	3	4	5
Уровень достижений	Низкий	Базовый	Повышенный	

Инструкция для учащихся

На выполнение работы по химии дается 40 минут. Работа состоит из трех частей, включающих 16 заданий.

Часть A содержит 10 заданий (A_1 - A_{10}). К каждому заданию приводится 4 варианта ответа, из которых один верный.

Часть B включает 4 задания с кратким ответом (B_1 - B_3). При выполнении заданий B_1 - B_3 запишите ответ так, как указано в тексте задания. На задание B_4 необходимо дать развернутый ответ.

Часть C включает 2 задания, на которые следует дать развернутый ответ. При выполнении заданий этой части запишите сначала номер задания, а затем ответ к нему.

Контрольно-измерительные материалы для проведения промежуточной аттестации по предмету «Химия» для 10 класса

А1. Оощая формула алканов:
1) $C_n H_{2n}$ 3) $C_n H_{2n-2}$
2) $C_n H_{2n+2}$ 4) $C_n H_{2n-6}$
А2. Название вещества, формула которого
CH_3 — $CH(CH_3)$ — $CH(OH)$ — CH_3
1) бутанол-2
2) 2-метилбутанол-3
3) пентанол-2
4) 3-метилбутанол-2
А3. Вид гибридизации электронных орбиталей атома углерода, обозначенного
звёздочкой в веществе, формула которого CH ₃ —C*≡CH
1) sp3 3) sp
2) sp ² 4) не гибридизирован
А4. Число σ-связей в молекуле этилена равно:
1) 6 2) 5 3) 2 4) 4
А5. Гомологами являются
1) бензол и циклогексан
2) фенол и этанол
3) этен и пропен
4) толуол и метилбензол
Аб. Изомером пропановой кислоты является
1) диэтиловый эфир
2) бутаналь
3) пропилацетат
4) этилформиат
А7. Окраска смеси глицерина с гидроксидом меди (II)
1) голубая 3) красная
2) синяя 4) фиолетовая
А8. Этан из хлорметана можно получить при помощи реакции
1) Вюрца 3) Кучерова
2) Зинина 4) Лебедева
А9. Какие вещества можно использовать для последовательного осуществления
следующих превращений $C_2H_5Cl \rightarrow C_2H_4 \rightarrow C_2H_5OH$
1) КОН (спирт. p-p), H ₂ O
2) КОН (водн. p-p), H ₂ O
3) Na, H_2O
4) KCl, H ₂ O
А10. Объём углекислого газа, образовавшийся при горении 3 л пропана
1) 2 л 2) 6 л 3) 3 л 4) 9 л
В1. Этиламин взаимодействует

1) метаном

- водой
- 3) бромоводородом
- 4) бензолом
- 5) кислородом
- 6) пропаном
- В 2. И для ацетилена, и для пропина характерны
 - 1) тетраэдрическая форма молекулы
 - 2) ѕр-гибридизация атомов углерода в молекулах
 - 3) реакция гидрирования
 - 4) наличие только σ-связей в молекулах
 - 5) горение на воздухе
 - 6) реакция с хлоридом натрия
- В 3. Установите соответствие между молекулярной формулой органического вещества и классом, к которому оно относится

 $A) C_4H_6$ 1) углеводы $B) C_4H_8O_2$ 2) арены $B) C_7H_8$ 3) алкины

 Γ) $C_5H_{10}O_5$ 4) сложные эфиры

5) альдегиды

- В 4. Молекулярная формула циклоалкана, массовая доля углерода в котором 85,71 %, а относительная плотность паров по воздуху 1, 931 ______
- С 1. Напишите уравнения реакций, с помощью которых можно осуществить превращения по схеме

$$CH_4 \rightarrow CH_3C1 \rightarrow C_2H_6 \rightarrow C_2H_4 \rightarrow C_2H_5OH \rightarrow HCOOC_2H_5$$

$$\downarrow CO_2$$

С 2. Какая масса метилацетата образуется при взаимодействии 80 г 60% раствора уксусной кислоты с метиловым спиртом, если доля выхода эфира составляет 90%?