МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Самарской области государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа пос. Ленинский муниципального района Красноармейский Самарской области

«Рассмотрено»	«Проверено»	«Утверждено»	
на заседании МО учителей	Зам. директора по УВР	И.о. директора ГБОУ СОШ	
естественно-математического цикла	Тезикова Л.И.	пос. Ленинский	
Протокол № 1		Яннаева Л.Ф.	
от «29» августа 2023г.	«30» августа 2023 г.	Приказ № 124 о/д от	
Руководитель МОЛ.Ф.		«30» августа 2023 г.	
Яннаева			

РАБОЧАЯ ПРОГРАММА элективного курса

по химии

«Решение задач по химии повышенного уровня сложности»

Уровень программы среднее общее образование

Классы <u>10-11</u>

Составлена на основе

программы курса химии общеобразовательных учреждений, предметная линия учебников Г.Е.Рудзитиса, Ф.Г. Фельдмана. 10-11 классы /Н.Н. Гара.- М.:Просвещение, 2019

пос. Ленинский 2023

Планируемые результаты освоения программы.

Учащиеся должны знать:

- основные формулы для решения расчетных задач по химии, названия величин и их буквенные обозначения;
- способы оформления задач по химии; Должны **уметь:**
- решать задачи наиболее рациональным способом;
- применять различные формулы при решении задач разного уровня сложности;
- записывать оформление и решение задачи
- рассуждать логически и нестандартно мыслить.

Пройдя данный курс, учащиеся смогут решать задачи повышенного уровня сложности из сборников задач на базе знаний выпускников средней школы.

Формами отчетности по изучению данного курса могут быть:

- решение расчетной задачи наиболее рациональным способом или несколькими способами (урок-вертушка);
- конкурс (количественный) числа решенных задач;
- составление сборников авторских задач учащихся по разделу, теме (с решениями);
- составление творческих расчетных задач по различным темам (например «Медицина», «Экология», «Промышленность», «Кулинария» и т.п.)
- химический диктант в начале и конце изучения данного курса.

Содержание тем элективного курса.

Тема 1. Основные типы расчетных задач по химии (6 ч)

Занятие 1. Введение (1ч)

Учащиеся знакомятся с общей структурой курса, его примерным содержанием, с формами, видами и планируемым объемом самостоятельных и итоговых работ. Лекция носит установочный характер и призвана подготовить учащихся к качественному выполнению самостоятельной работы. Первоначальное анкетирование, в ходе которого учитель выясняет слабые стороны для учеников и впоследствии может уделить больше внимания для повторения этих разделов. Диктант.

1. единицы выражения массы-.....

2. единицы выражения молярной массы -
4. единицы выражения количества вещества -
о. значение молярного объема 7. формула нахождения массовой доли вещества в растворе через массу вещества и массу раствора W=
8. значение постоянной Авогадро N _a =
9. формула нахождения массы через объем и плотность вещества m= 10. формула нахождения количества вещества через массу вещества и
молярную массу n=

Занятие 2-6. Основные физические и химические величины (5ч)

Решение задач на нахождение основных химических величин: молярная масса, количество вещества, решение по уравнению реакции, нахождение массовой доли элемента в веществе.

Пример задачи:

- 1. определите какое количество вещества брома содержится в молекулярном броме массой 12,8г. Ответ: 0,08 моль
- 2. определите массу карбоната натрия количеством вещества 0,25 моль. Ответ: 26,5г.
- 3. вычислите массовую долю углерода в карбиде углерода CaC_2 . Ответ: 37,5%

Тема 2. Задачи с использованием газовых законов (12ч)

Знакомство обучающихся с основными законами химии — законом Авогадро, Гей-Люссака и Бойля — Мариотта. Для более полного содержания можно кратко ознакомить обучающихся с жизнь и деятельностью этих ученых, а также представить информацию об истории открытия этих законов. Решение задач обучающимися по данной теме с использованием алгоритма.

Занятие 7-10. Закон Авогадро (4ч)

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объем.

В частности, при нормальных условиях, т.е. при 0° С (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л/моль. Этот объём называют молярным объёмом газа $V_{\rm m}$.

На основе закона Авогадро определяют молекулярные массы газообразных веществ по их плотности.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

M(газа)= $M(H_2)\cdot D_{H2}$ M(газа)= $M(возд)\cdot D_{возд}$

Примеры задач:

- 1. в каком объеме аммиака содержится $6.02 \cdot 10^{25}$ протонов прин.у. Ответ: 224π .
- 2. определите плотность селеноводорода по водороду и по воздуху. Ответ: 40,5 и 2,8
- 3. плотность галогеноводорода по воздуху равна 4,41. Определите плотность этого газа по водороду и назовите его. Ответ: 64, йодоводород.

Занятие 11-14. Законы Гей-Люссака и Бойля-Мариотта (4ч)

Объединенный газовый закон - объединение трех независимых частных газовых законов: Гей-Люссака, Шарля, Бойля-Мариотта, уравнение, которое можно записать так:

$$P_1V_1 / T_1 = P_2V_2 / T_2$$

Где P_1 и V_1 давление и объем газа при данной температуре, а P_2 и V_2 давление и объем газа при н.у.

И наоборот, из объединенного газового закона

при $P = const (P_1 = P_2)$ можно получить

 $V_1 / T_1 = V_2 / T_2$

(закон Гей-Люссака);

при T = const (T1 = T2):

 $P_1V_1=P_2V_2$

(закон Бойля-Мариотта);

при V = const

 $P_1 \: / \: T_1 = P_2 \: / \: T_2$

(закон Шарля).

Примеры задач:

- 1. При 25^{0} С и давлении 99,3 кПа (745 мм рт ст) некоторый газ занимает объем 153 см³. Найдите, какой объем занимает этот же газ при 0^{0} С и давлении 101, 33 кПа?. Ответ: 136,5 см³.
- 2. Определите объем, который займет азот массой 5,25г. при 26° С и давлении 98,9 кПа (742 мм РТ ст). Ответ: 4,71 дм³.
- 3. какую массу будет иметь азот объемом 30л. при н.у.

Занятие 15-18. Закон кратных отношений (4 ч)

Закон кратных отношений (Д.Дальтон, 1803 г.). Если два химических элемента дают несколько соединений, то весовые доли одного и того же

элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

 N_2O N_2O_3 $NO_2(N_2O_4)$ N_2O_5

Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1:3:4:5.

Примеры задач:

- 1. Определите, какой объем водорода потребуется для синтеза 20 л. хлороводорода? Ответ: 10л.
- 2. Вычислите объем кислорода, необходимого для полного сгорания $250 \, \mathrm{m}^3$ метана. Какой объем воздуха при этом расходуется. Ответ: $2380 \, \mathrm{m}^3$.

<u>Тема 3. Вывод формул неорганических и органических соединений</u> различными способами (16 ч)

Решение задач на вычисление массовой доли элемента в веществе, вывод формулы разными способами.

 $M=\rho \cdot V_m$

 $M=D\cdot M($ газа)

W(элемента) : W_1 (элемента)= X: X_1

 $Ar(элемента) Ar_1 (элемента)$

Занятие 19-26. Вывод формул неорганических химических соединений различными способами (8ч)

Примеры задач:

- 1. массовые доли серы и кислорода в оксиде серы равны соответственно 40 и 60%. определите формулу этого оксида. Ответ: SO_3
- 2. Молярная масса соединения азота с водородом равна 32 г/моль. Определите формулу этого соединения, если массовая доля азота в нем составляет 87,5%. Ответ: N_2H_4
- 3. Содержание фосфора в одном из его оксидов равно 43,66%. Плотность паров этого вещества по воздуху равна 9,79. Установите формулу оксида. Ответ: P_4O_{10}

Занятие 27-34. Вывод формул органических химических соединений различными способами (8ч)

Тема 4. Способы выражения концентрации растворов (12ч)

При изучении этой темы обучающиеся приобретают навыки в:

- приготовлении растворов разной концентрации;
- определению концентрации отдельных компонентов в растворах;
- определению концентрации растворов после смешивания двух растворов разной концентрации.

Учащиеся самостоятельно решают задачи, составляют алгоритмы их решения. Учитель исполняет роль консультанта.

Занятие 35-38. Процентная концентрация. Молярная и нормальная концентрации. (4 ч)

W=m(в-ва)/m(р-ра), процентная концентрация,%

Молярная концентрация – отношение количества растворенного вещества в единицу объема, моль/л., М.

C(X)=n(X)/V(p-pa), где C(X) — концентрация вещества X, n(X) — количество растворенного вещества X, V(p-pa) — объем раствора.

С_н – нормальная или эквивалентная концентрация вещества.

 $\mathbf{C}_{\mathbf{H}} = \underline{\mathbf{n}}(\mathbf{B} - \mathbf{B}\mathbf{a}) \cdot \mathbf{B}$

V (p-pa) , где n(в-вa) — количество вещества, V (p-pa) — объем раствора, B — валентность атомов элемента в соединении.

 C_{H} – моль экв/л., H

примеры задач:

- 1. Какую массу соли и воды нужно взять для приготовления раствора с массовой долей сульфата натрия 0,12 массой 40кг? Ответ: 4,8 кг сульфата натрия и 35,2 кг воды
- 2. Определите молярную концентрацию раствора, полученного при растворении сульфата натрия массой 42,6 кг в воде массой 300г., если плотность полученного раствора равна1,12г/мл. Ответ: 0,98 моль/л.
- 3. найти массу фосфорной кислоты, если объем равен 100 мл, а $C_{\scriptscriptstyle H}=0.02$ н.

Занятие 39- 42. Задачи на смешивание растворов (4ч).

Правило креста:

$$W_1 (W_3-W_2) m_1 (p-pa)$$
 \/ W_3 /\ $W_2 (W_1-W_3) m_2 (p-pa)$

$$m_1W_3 - W_2$$

m_2W_1 - W_3

Примеры задач:

- 1. Смешали 250 г. 10%-ного и 750 г. 15% раствора кислоты. Вычислите массовую долю в новом растворе. Ответ: 13,75%.
- 2. Столовый уксус (раствор уксусной кислоты в воде) применяется как приправа к пище. Какой объем воды нужно прилить к 500 г. 9%-ного уксуса для получения раствора с массовой долей уксусной кислоты 3%? Ответ: 1л. воды.

Занятие 43-46. Объемная доля растворенного вещества (4ч)

Объемная доля — отношение объема данного компонента к общему объему системы.

 $\phi(X)=V(X)/V$, где $\phi(X)$ —объемная доля компонента $X,\ V(X)$ — объем вещества $X,\ V$ — объем системы.

Примеры задач:

- 1. К метиловому спирту массой 32г. и плотностью 0,8 г/мл. прибавили воду до объема 80мл. Определите объемную долю спирта в растворе. Ответ: 50%.
- 2. При смешивании воды объемом 50мл. и плотностью 1 г/мл. и метилового спирта объемом 70 мл. и плотностью 0,8 г/мл. получили раствор с плотностью 0,9 г/мл. Определите объемную долю метилового спирта в растворе. Ответ: 59,4%.
- 3. Определите, какую массу глицерина плотностью 1,26г/мл надо взять для приготовления водного раствора объемом 50 мл с объемной долей глицерина 30%. Ответ: 18,9г.

Тема 5. Решение задач алгебраическим способом (20 ч)

Обобщить и углубить знания учащихся, полученные при изучении данного курса. Выражать через алгебраическое обозначение химические величины; составлять уравнение с одной или двумя переменными; решать уравнения и системы уравнений; применять алгебраический метод для решения химических задач.

Занятие 47-66. Решение задач алгебраическим способом (20 ч) Примеры задач:

- 1. Смесь медных и магниевых опилок массой 1,5г. обработали избытком соляной кислоты. в результате реакции выделился водород объемом 560 мл. (н.у.). Определите массовую долю меди в смеси. Ответ: 60%.
- 2. Какой объем хлора (н.у.) потребуется для хлорирования смеси меди и железа массой 60г. Массовая доля меди в смеси 53,3%. Ответ: 28л.
- 3. При сгорании технической серы массой 10г. выделился газ, который пропустили через избыток раствора гидроксида натрия массой 24г. Определите массовую долю серы в техническом продукте. Ответ: 96%.

Тема 6. Итоговое занятие (2ч)

Учащиеся получают итоговые результаты индивидуального рейтинга по итогам работы, которые могут быть включены в портфолио. Обсуждение содержания данного элективного курса и форм его проведения, выяснить предложения и пожелания учащихся, итоговое анкетирование.

Занятие 33-34. Итоговое занятие (2ч)

Можно предложить индивидуальное или групповое решение задач в виде урока-вертушки по теме «Решение задач».

Тематическое планирование 68 часов

Nº	Названия тем	Кол-во часов	Виды деятельности
1	Основные типы расчетных задач по химии Введение. Основные физические и химические величины	6	Лекция. Входной контроль
2	Задачи с использованием газовых законов Закон Авогадро, законы Гей-Люссака и Бойля- Мариотта, закон кратных отношений	12	Решение задач
3	Вывод формул химических соединений различными способами	16	Решение задач
4	Способы выражения концентрации растворов Процентная концентрация. Молярная и нормальная концентрации. Задачи на смешивании растворов. Объемная доля растворенного вещества	12	Лекция. Опорный конспект. Алгоритмы
5	Решение задач алгебраическим способом	20	Решение задач
6	Итоговое занятие Итого	2 68	Зачет